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[1] The uncertainty of climatological values is calculated
with a method using the average absolute deviation from the
mean, or absolute error. This method is related to the mean of
the magnitude of the anomalies and its applicability is readily
verified with a proposed approximate numerical technique, in
contrast with the standard error methodwhose applicability is
cumbersome to verify. Different data sets were tested with
this technique showing that the method applies in a wide
variety of geophysical cases, including non-Gaussian cases.
When it applies, the absolute error method provides
additional information on the mean, such as the error due
to the sample size. INDEX TERMS: 1620 Global Change:

Climate dynamics (3309); 3309 Meteorology and Atmospheric

Dynamics: Climatology (1620); 4215 Oceanography: General:

Climate and interannual variability (3309). Citation: Pavia, E. G.

(2004), The uncertainty of climatological values, Geophys. Res.

Lett., 31, L14206, doi:10.1029/2004GL020526.

1. Introduction

[2] In the simplest and schematic way we estimate a
climatological value (or simply climatology), m, by averaging
a record of N available data,

x ¼ 1

N

XN
i¼1

xi; ð1Þ

and similarly we obtain a measure of its uncertainty by
calculating the standard error (or standard deviation of the
sample mean),

es ¼ s xð Þ=
ffiffiffiffi
N

p
; ð2Þ

where

s xð Þ ¼ 1

N � 1

XN
i¼1

xi � xð Þ2
" #1=2

; ð3Þ

is the standard deviation of x. This is done in order to state
the range in which we are confident our climatology lies,
x � es � m � x + es or m = x ± es. A common use of this
result is to discern anomalies compared to es, that is if jdxi =
xi � xj � es then dmi = 0, else we reduce the magnitude of
the anomalies by es to find dmi (jdmij = jdxij � es). In
other words, if the uncertainty is greater than jdxij the
climatological anomaly, dmi, is null and otherwise its
magnitude is reduced by es.

[3] When the data are Gaussian and uncorrelated the
above method is valid and statistically robust; but in many
geophysical situations the data do not clearly meet these
requirements, and thus we would like to know if our
measure of uncertainty is valid or not. In these situations
es is sometimes called the ‘‘lowest limit’’ of the standard
error [see, e.g., Pavia and Graef, 2002], strictly meaning
that the uncertainty of the climatological value is greater
than es. Thus the purpose of this work is to propose a
new method whose applicability we can test in more
general situations. Of course, there are many works on
different aspects of this subject, and in this short note we
do not intend to make a thorough review of it since we
deal only with a small part of this problem, namely the
validity test of the method to estimate the uncertainty of
climatological values. Nevertheless, as a background the
reader is referred to the works of Leith [1973], for an
example of early work on this subject, Guttman [1989],
for a review of climatological normals; Taylor [1997], for
a more general statistical approach to error analysis; and
von Storch and Navarra [1999] and von Storch and
Zwiers [1999], for a discussion of applications of
statistical techniques to climate research. We begin by
introducing an alternative to equation (2) as a measure of
uncertainty.

2. The Absolute Error

[4] Climatological data might have large and non-Gauss-
ian deviations basically because each outcome xi is not an
independent measure of x. A measure of the mean deviation
may be

a xð Þ ¼ 1

N

XN
i¼1

xi � xj j; ð4Þ

or absolute deviation. This leads to another measure of
uncertainty called the absolute error

ea ¼ a xð Þ=
ffiffiffiffi
N

p
; ð5Þ

which, in some cases, may be preferable to equation (2). For
example: i) To compare climatological values, because
a(x) � s(x) and the smaller the measure of uncertainty the
stricter the comparing criterion; ii) To obtain additional
information about x, because a(x) is equivalent to the mean
error of the poorest climatological estimate of x [x(N = 1)],
that is if we select only one outcome to represent the
climatology and repeat this process for every outcome,
the mean error will be given by a(x); and iii) To test the
applicability of the uncertainty method, because it is
straightforward to verify if an expression equivalent to
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equation (5) applies or not for a particular data set. This last
point is explained in more detail in the next section.

3. The Equivalent Absolute Error

[5] Let us define the sample-size dependent absolute
deviation from the mean as the error due to the sample size

Z jð Þ � xj � m
�� ��; ð6Þ

where

xj �
1

j

Xj

n¼1

xn; j ¼ 1; 2; :::; J ; ð7Þ

in this case j (not N) is the sample size, J its greatest value
(to be determined a priori), and m is the expected value of x,
m = E[x]. Indeed we are interested in the expected value of
equation (6)Mj = E[Z(j)], j = 1, 2,. . ., J; that is the mean
error of different estimates of xj with the same sample size j.
Since equation (6) is non-analytical calculating Mj is usually
rather difficult but if we assume that it is related to
equation (5) then Mj 	 j�1/2, or Mj = C/

ffiffi
j

p
, and by

inspection for j = 1, C = M1 = E[Z(1)], thus we get

Mj � E Z jð Þ½ � ¼ E Z 1ð Þ½ �ffiffi
j

p : ð8Þ

[6] This is the sample-size dependent average absolute
deviation of the mean, which for m = x and j = N would be
equivalent to the absolute error, that is MN � ea. But for
equation (8) to apply to a particular data set estimates of Mj

with different j should behave like the right-hand side of
equation (8). If they do the above assumption is correct and
MN is an equivalent measure of uncertainty. One way to
estimate Mj in order to check our method is suggested in the
next section.

4. Numerical Verification

[7] As an example consider a very simple non-Gaussian
but symmetric ideal case. Suppose xj are drawn from a 0 to 1
uniform distribution, then m = 0.5 and E[Z(1)] = 0.25.
Obviously m represents the climatology and E[Z(1)] repre-
sents the average of its poorest estimation with a sample size

j = 1. To reduceMj in equation (8) by one order of magnitude
we need j = 100, therefore in this case M100 = 0.025.
[8] To test our method we use a linearized least-squares

technique by rewriting equation (8) asMj = ajb, and ln(Mj) =
ln a + b ln j, or Yj = A + BXj, where Yj = ln(Mj), A = ln a, B =
b, Xj = ln j. That is we minimize an expression of the form

XJ
j¼1

�2j ¼
XJ
j¼1

Aþ BXj

� �
� Yj

� 	2
;

where from the above we choose J = 100. To calculate Yj,
j = 1, 2,. . ., J we approximate Mj by averaging 1000 random
samples

Mj 	
1

1000

X1000
k¼1

Z jð Þk ; ð9Þ

where Z(j)k = j xj
� �

k
� mj; that is the xj are taken at random

with replacement from the uniform distribution. For this
ideal case this procedure yields a = eA = 0.23,M100 = 0.0232
and b = B = �0.50, indicating that equation (8) satisfactorily
applies in this uniform case. Other examples with artificial
data of known distribution gave similarly acceptable results
in Gaussian, quasi-Gaussian and Rayleigh cases, and non-
acceptable results in exponential and Weibull (with shape
parameter c < 1) cases (see Figure 1).

5. Real Data Examples

[9] As with artificial data our method does not always
apply to real data (see Figure 2), which can be attributed to
different reasons. For example for mean annual records of
sea surface temperature (SST) data in Vizcaine Bay,
Mexico, we find a climatological value of m = 20.7 ±
0.1 C for the period 1982–1999, but the validity test yields
b 	 �0.2 (perhaps due to internal correlations or small N)
and thus es = 0.1 is just the ‘‘lowest limit’’ of the uncertainty
because for autocorrelated data the effective N (Neff) in
equation (2) is smaller than N (Neff < N). Similarly, wind
speed data with large percentage of calms (zero values)
yield �b � 1/2 and thus in these cases neither equation (8)
applies nor a real measure of uncertainty can be obtained
because the data are exponentially distributed as the artifi-
cial data example given in the previous section.

Figure 1. Mj/M1 for artificial data. The corresponding
curves for Gaussian, quasi-Gaussian and Rayleigh distrib-
uted data approximate the theoretical curve ( j�1/2).

Figure 2. Mj/M1 for real data. The corresponding curves
for total annual precipitation data in Ensenada and San
Diego approximate the theoretical curve ( j�1/2).
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[10] Next we compare two climatologies where our
method is found to be valid; the first case is the 1948–
2003 annual precipitation climatology in Ensenada, Baja
California, Mexico, and the second case is the 1850–2003
annual precipitation climatology in San Diego, California.
Annual precipitation data are much more closely Gaussian
than higher frequency data so in this sense our method is
expected to apply. The precipitation in these two stations is
highly cross-correlated for coincident periods [Pavia and
Badan, 1998], but it has been suggested that the Ensenada
data may be overestimated (the station is located in a dam
between two small hills) and that the San Diego data set
may be more reliable [Pavia and Graef, 2002] since it is
subject to a more rigorous quality control than the Ensenada
data. Thus we would like to know if there is a statistically
significant difference between the two climatologies. In the
first case N = 56, x(N) = 260 mm, s(x) = 125 mm, es =
17 mm, and we get M1 	 a = eA = 95 mm (equivalent to
a(x)), b = B =�0.4882, andMN 	 13 mm (equivalent to ea).
Thus in terms of the absolute error the Ensenada climatology
should be written mens = 260 ± 13 mm. In the second case N =
154, x(N) = 253 mm, s (x) = 103 mm, es = 8 mm, and we get
M1 	 a = eA = 83 mm (equivalent to a(x)), b = B =�0.4958,
and MN 	 7 mm (equivalent to ea). Thus in terms of the
absolute error the San Diego climatology should be written
msdi = 253 ± 7 mm. Therefore equation (8) applies, the
measures of uncertainty are valid, and we cannot say that
there is a statistically significant difference between the two
climatologies (at 1 � 1/28 = 0.9643 confidence).

6. Discussion and Conclusions

[11] The absolute error and the standard error are both
practical measures of the uncertainty of the mean in most
climatological cases, but the former is more conservative
than the latter, which might be preferable in situations
where a more strict criterion than the one obtained with
the standard error is needed. Furthermore from the absolute
error concept we can derive an equivalent expression
equation (8) whose validity for each particular case can be
verified by a numerical technique. The validation is done by
comparing the obtained value of b with b = �1/2, and the

application of this technique suggests that the method
generally applies in symmetric distributed cases and some
moderate asymmetric distributed cases, but it fails for
extreme asymmetric cases. When equation (8) is valid
the method provides additional information, such as the
approximate size of the largest error and how this error
decreases (	jb, b 	 �1/2), when equation (8) fails it was
found in all cases that �b� 1/2. This paper responds to the
call for additional descriptors of symmetric and asymmetric
distributed data besides the measure of central tendency
[Guttman, 1989]; in other words methods for the analysis of
entire data sets which perhaps should be used before and in
addition to advanced time series techniques for climate
research (see, e.g., Godtliebsen et al. [2003], for analysis
in the time domain, and Ghil et al. [2002], for analysis in
the frequency domain).
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